Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 164

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Report of summer holiday practical training on 2022

Ishitsuka, Etsuo; Ho, H. Q.; Kitagawa, Kanta*; Fukuda, Takahito*; Ito, Ryo*; Nemoto, Masaya*; Kusunoki, Hayato*; Nomura, Takuro*; Nagase, Sota*; Hashimoto, Haruki*; et al.

JAEA-Technology 2023-013, 19 Pages, 2023/06

JAEA-Technology-2023-013.pdf:1.75MB

Eight people from five universities participated in the 2022 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the feasibility study for nuclear battery, the burn-up analysis of HTTR core, the feasibility study for $$^{252}$$Cf production, the analysis of behavior on loss of forced cooling test, and the thermal-hydraulic analysis near reactor pressure vessel. In the questionnaire after this training, there were impressions such as that it was useful as a work experience, that some students found it useful for their own research, and that discussion with other university students was a good experience. These impressions suggest that this training was generally evaluated as good.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Study on the effect of long-term high temperature irradiation on TRISO fuel

Shaimerdenov, A.*; Gizatulin, S.*; Dyussambayev, D.*; Askerbekov, S.*; Ueta, Shohei; Aihara, Jun; Shibata, Taiju; Sakaba, Nariaki

Nuclear Engineering and Technology, 54(8), p.2792 - 2800, 2022/08

 Times Cited Count:7 Percentile:90.45(Nuclear Science & Technology)

Journal Articles

Concepts and basic designs of various nuclear fuels, 5; Fuels for high temperature gas-cooled reactor and molten salt reactor

Ueta, Shohei; Sasaki, Koei; Arita, Yuji*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(8), p.615 - 620, 2021/08

no abstracts in English

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2018)

Department of HTTR

JAEA-Review 2019-049, 97 Pages, 2020/03

JAEA-Review-2019-049.pdf:4.66MB

The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor being able to get 950$$^{circ}$$C temperature of the outlet coolant with 30 MW of thermal power, constructed at the Oarai Research and Development Institute of the Japan Atomic Energy Agency is the first High- Temperature Gas-cooled Reactor (HTGR) in Japan. The purpose of the HTTR is to establish and upgrade basic technologies for HTGRs. The HTTR has accumulated a lot of experience of HTGRs' operation and maintenance up to the present time throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2018, we made effort to pass the inspection of application document for the HTTR licensing to prove conformity with the new regulatory requirements for research reactors that took effect since December 2013 in order to restart operations of the HTTR that stopped since the 2011 off the Pacific coast of Tohoku Earthquake. This report summarizes the activities carried out in the 2018 fiscal year, which were the situation of the new regulatory requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

Journal Articles

Irradiation growth behavior of improved Zr-based alloys for fuel cladding

Amaya, Masaki; Kakiuchi, Kazuo; Mihara, Takeshi

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1048 - 1056, 2019/09

Journal Articles

Loss of core cooling test with one cooling line inactive in Vessel Cooling System of High-Temperature Engineering Test Reactor

Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Takada, Shoji

Journal of Nuclear Engineering and Radiation Science, 3(4), p.041013_1 - 041013_8, 2017/10

In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1$$^{circ}$$C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15$$^{circ}$$C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.

Journal Articles

Thermal-hydraulic analyses of the High-Temperature engineering Test Reactor for loss of forced cooling at 30% reactor power

Takamatsu, Kuniyoshi

Annals of Nuclear Energy, 106, p.71 - 83, 2017/08

The HTTR, which is the only HTGR having inherent safety features in Japan, conducted a safety demonstration test involving a loss of both reactor reactivity control and core cooling. The paper shows thermal-hydraulics during the LOFC test at an initial power of 30% reactor power (9 MW), when the insertion of all control rods was disabled and all gas circulators were tripped to reduce the coolant flow rate to zero. The analytical results could show that the downstream of forced convection caused by the HPS pushes down the upstream by natural convection in the fuel assemblies; however, the forced convection has little influence on the core thermal-hydraulics without the reactor outlet coolant temperature. As a result, the three-dimensional thermal-phenomena inside the RPV during the LOFC test could be understood qualitatively.

Journal Articles

Altitude control performance improvement via preview controller for unmanned airplane for radiation monitoring system

Sato, Masayuki*; Muraoka, Koji*; Hozumi, Koki*; Sanada, Yukihisa; Yamada, Tsutomu*; Torii, Tatsuo

Nihon Koku Uchu Gakkai Rombunshu (Internet), 65(2), p.54 - 63, 2017/02

This paper is concerned with the design problem of preview altitude controller for Unmanned Airplane for Radiation Monitoring System (UARMS) to improve its control performance. UARMS has been developed for radiation monitoring around Fukushima Daiichi Nuclear Power Plant which spread radiation contaminant due to the huge tsunamis caused by the Great East Japan Earthquake. The monitoring area contains flat as well as mountain areas. The basic flight controller has been confirmed to have satisfactory performance with respect to altitude holding; however, the control performance for variable altitude commands is not sufficient for practical use in mountain areas. We therefore design preview altitude controller with only proportional gains by considering the practicality and the strong requirement of safety for UARMS. Control performance of the designed preview controller was evaluated by flight tests conducted around Fukushima Sky Park.

Journal Articles

Investigation of absorption characteristics for thermal-load fluctuation using HTTR

Tochio, Daisuke; Honda, Yuki; Sato, Hiroyuki; Sekita, Kenji; Homma, Fumitaka; Sawahata, Hiroaki; Takada, Shoji; Nakagawa, Shigeaki

Journal of Nuclear Science and Technology, 54(1), p.13 - 21, 2017/01

 Times Cited Count:1 Percentile:10.58(Nuclear Science & Technology)

GTHTR300C is designed and developed in JAEA. The reactor system is required to continue a stable and safety operation as well as a stable power supply in the case that thermal-load is fluctuated by the occurrence of abnormal event in the heat utilization system. Then, it is necessary to demonstrate that the thermal-load fluctuation should be absorbed by the reactor system so as to continue the stable and safety operation could be continued. The thermal-load fluctuation absorption tests without nuclear heating were planned and conducted in JAEA to clarify the absorption characteristic of thermal-load fluctuation mainly by the reactor and by the IHX. As the result it was revealed that the reactor has the larger absorption capacity of thermal-load fluctuation than expected one, and the IHX can be contributed to the absorption of the thermal-load fluctuation generated in the heat utilization system in the reactor system. It was confirmed from there result that the reactor and the IHX has effective absorption capacity of the thermal-load fluctuation generated in the heat utilization system. Moreover it was confirmed that the safety estimation code based on RELAP5/MOD3 can represents the thermal-load fluctuation absorption behavior conservatively.

Journal Articles

Irradiation test and post irradiation examination of the high burnup HTGR fuel

Ueta, Shohei; Aihara, Jun; Shaimerdenov, A.*; Dyussambayev, D.*; Gizatulin, S.*; Chakrov, P.*; Sakaba, Nariaki

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.246 - 252, 2016/11

In order to examine irradiation performance of the new Tri-structural Isotropic (TRISO) fuel for the High Temperature Gas-cooled Reactor (HTGR) at the burnup around 100 GWd/t, a capsule irradiation test was conducted by WWR-K research reactor in the Institute of Nuclear Physics (INP) of Kazakhstan. The irradiated TRISO fuel was designed by Japan Atomic Energy Agency (JAEA) and fabricated in basis of the HTTR fuel technology in Japan. The fractional release of fission gas from the fuel during the irradiation shows good agreement with the predicted one released from as-fabricated failed TRISO fuel. It was suggested that unexpected additional fuel failure would not occur during the irradiation up to 100 GWd/t. In addition, the post-irradiation examination (PIE) with the irradiated fuel is planned to qualify TRISO fuel integrity and upgrade HTGR fuel design for further burnup extension.

Journal Articles

Investigation of countermeasure against local temperature rise in vessel cooling system in loss of core cooling test without nuclear heating

Ono, Masato; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.044502_1 - 044502_4, 2016/10

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to verify safety evaluation codes to investigate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. The VCS passively removes the retained residual heat and the decay heat from the core via the reactor pressure vessel by natural convection and thermal radiation. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. Through a cold test, which was carried out by non-nuclear heat input from gas circulators with stopping water flow in the VCS, the local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

Journal Articles

Loss of core cooling test without one cooling line in Vessel Cooling System (VCS) of High Temperature engineering Test Reactor (HTTR)

Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Hamamoto, Shimpei; Iigaki, Kazuhiko; Takada, Shoji

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 7 Pages, 2016/06

In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1$$^{circ}$$C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15 degree C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.

Journal Articles

A Rapid evaluation method of the heat removed by a VCS before rise-to-power tests

Takamatsu, Kuniyoshi

Journal of Thermal Science, 24(3), p.295 - 301, 2015/06

 Times Cited Count:2 Percentile:11.46(Thermodynamics)

Before rise-to-power tests, the actual measured value of heat released from the Reactor Pressure Vessel (RPV) or removed by the Vessel Cooling System (VCS) cannot be obtained. It is difficult for operators to evaluate the reactor outlet coolant temperature supplied from the High Temperature Engineering Test Reactor (HTTR) before rise-to-power tests. Therefore, when the actual measured value of heat released from the RPV or removed by the VCS are changed during rise-to-power tests, operators need to evaluate quickly, within a few minutes, the heat removed by the VCS and the reactor outlet coolant temperature of 30 (MW), at the 100% of the reactor power, before the temperature achieves to 967 ($$^{circ}$$C) which is the maximum temperature limit generating the reactor scram. In this paper, a rapid evaluation method for use by operators is presented.

Journal Articles

Nuclear heat supply fluctuation test by non-nuclear heating using HTTR

Takada, Shoji; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Inaba, Yoshitomo; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

To investigate the safety design criteria of heat utilization system for the HTGRs, it is necessary to evaluate the effect of fluctuation of thermal load on the reactor. The nuclear heat supply fluctuation test by non-nuclear heating was carried out to simulate the nuclear heat supply test which is carried out in the nuclear powered operation. The test data is used to verify the numerical code to calculate the temperature of core bottom structure to carry out the safety evaluation of abnormal events in the heat utilization system. In the test, the helium gas temperature was heated up to 120$$^{circ}$$C. A sufficiently high temperature disturbance was imposed on the reactor inlet temperature. It was found that the response of temperatures of metallic components such as side shielding blocks was faster than those of graphite blocks in the core bottom structure, which was significantly affected by the heat capacities of components, the level of imposed disturbance and heat transfer performance.

Journal Articles

Investigation of characteristics of natural circulation of water in vessel cooling system in loss of core cooling test without nuclear heating

Takada, Shoji; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Seki, Tomokazu; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to demonstrate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. The local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

Journal Articles

Experiments and validation analyses of HTTR on loss of forced cooling under 30% reactor power

Takamatsu, Kuniyoshi; Tochio, Daisuke; Nakagawa, Shigeaki; Takada, Shoji; Yan, X.; Sawa, Kazuhiro; Sakaba, Nariaki; Kunitomi, Kazuhiko

Journal of Nuclear Science and Technology, 51(11-12), p.1427 - 1443, 2014/11

 Times Cited Count:13 Percentile:69.89(Nuclear Science & Technology)

In a safety demonstration test involving a loss of both reactor reactivity control and core cooling, HTGRs such as the HTTR, which is the only HTGR in Japan, demonstrate that the reactor power would stabilize spontaneously. In the test at an initial power of 30%, when the insertion of all control rods was disabled and all gas circulators were tripped to reduce the coolant flow rate to zero, a reactor transient was initiated and examined. The results confirmed that the reactor power would decrease immediately and become effectively zero.

Journal Articles

Irradiation performance of HTGR fuel in WWR-K research reactor

Ueta, Shohei; Shaimerdenov, A.*; Gizatulin, S.*; Chekushina, L.*; Honda, Masaki*; Takahashi, Masashi*; Kitagawa, Kenichi*; Chakrov, P.*; Sakaba, Nariaki

Proceedings of 7th International Topical Meeting on High Temperature Reactor Technology (HTR 2014) (USB Flash Drive), 7 Pages, 2014/10

A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO$$_{2}$$ (less than 10% of $$^{235}$$U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel.

Journal Articles

Improvement of core dynamics analysis of control rod withdrawal test in HTGR

Takamatsu, Kuniyoshi; Nakagawa, Shigeaki

Nihon Genshiryoku Gakkai Wabun Rombunshi, 5(1), p.45 - 56, 2006/03

The HTTR (High Temperature Engineering Test Reactor), which has thermal output of 30MW, coolant inlet temperature of 395$$^{circ}$$C and coolant outlet temperature of 850$$^{circ}$$C/950$$^{circ}$$C, is a first high temperature gas-cooled reactor (HTGR) in Japan. The HTGR has a high inherent safety potential to accident condition. Safety demonstration tests using the HTTR are underway in order to demonstrate such excellent inherent safety features of the HTGR. A one-point core dynamics approximation with one fuel channel model had applied to this analysis. It was found that the analytical model for core dynamics couldn't simulate the reactor power behavior accurately. This report proposes an original method using temperature coefficients of some regions in the core. It is crucial to evaluate this method precisely to simulate a performance of HTGR during the test.

Journal Articles

Analytical results of coolant flow reduction test in the HTTR

Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Iyoku, Tatsuo

Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-11) (CD-ROM), 12 Pages, 2005/10

Safety demonstration tests using the HTTR are in progress to verify the inherent safety features, to improve the safety design and the technologies for High Temperature Gas-cooled Reactors (HTGRs). The coolant flow reduction test by tripping one or two out of three gas circulators is one of the safety demonstration tests. The reactor power safely becomes a stable level without a reactor scram and the temperature transient of the reactor-core is very slow. The SIRIUS code was developed to analyze reactor transient during the tests with reactor dynamics. This paper describes the validation of the SIRIUS code with the measured values of one and two gas circulators tripping test at 30% (9 MW). It was confirmed that the SIRIUS code was able to analyze the reactor transient within 10% during the tests. The result of this study and the way of resolving problems can be applied to development for not only the commercial HTGRs but also the Very High Temperature Reactor (VHTR) as one of the Generation IV reactors.

164 (Records 1-20 displayed on this page)